Augmented Lagrangians with constrained subproblems and convergence to second-order stationary points
نویسندگان
چکیده
Augmented Lagrangian methods with convergence to second-order stationary points in which any constraint can be penalized or carried out to the subproblems are considered in this work. The resolution of each subproblem can be done by any numerical algorithm able to return approximate second-order stationary points. The developed global convergence theory is stronger than the ones known for current algorithms with convergence to secondorder points in the sense that, besides the flexibility introduced by the general lower-level approach, it includes a loose requirement for the resolution of subproblems. The proposed approach relies on a weak constraint qualification, that allows Lagrange multipliers to be unbounded at the solution. It is also shown that second-order resolution of subproblems increases the chances of finding a feasible point, in the sense that limit points are secondorder stationary for the problem of minimizing the squared infeasibility. The applicability of the proposed method is illustrated in numerical examples with ball-constrained subproblems.
منابع مشابه
Second-order negative-curvature methods for box-constrained and general constrained optimization
A Nonlinear Programming algorithm that converges to second-order stationary points is introduced in this paper. The main tool is a second-order negative-curvature method for box-constrained minimization of a certain class of functions that do not possess continuous second derivatives. This method is used to define an Augmented Lagrangian algorithm of PHR (Powell-Hestenes-Rockafellar) type. Conv...
متن کاملA generating set direct search augmented Lagrangian algorithm for optimization with a combination of general and linear constraints
We consider the solution of nonlinear programs in the case where derivatives of the objective function and nonlinear constraints are unavailable. To solve such problems, we propose an adaptation of a method due to Conn, Gould, Sartenaer, and Toint that proceeds by approximately minimizing a succession of linearly constrained augmented Lagrangians. Our modification is to use a 3 derivative-free ...
متن کاملConvergence to Second-Order Stationary Points of a Primal-Dual Algorithm Model for Nonlinear Programming
We define a primal-dual algorithm model (SOLA) for inequality constrained optimization problems that generates a sequence converging to points satisfying the second order necessary conditions for optimality. This property can be enforced by combining the equivalence between the original constrained problem and the unconstrained minimization of an exact augmented Lagrangian function and the use ...
متن کاملA Superlinearly Convergent Sequential Quadratically Constrained Quadratic Programming Algorithm for Degenerate Nonlinear Programming
We present an algorithm that achieves superlinear convergence for nonlinear programs satisfying the Mangasarian-Fromovitz constraint qualiication and the quadratic growth condition. This convergence result is obtained despite the potential lack of a locally convex augmented Lagrangian. The algorithm solves a succession of subproblems that have quadratic objective and quadratic constraints, both...
متن کاملA note on Fejér-monotone sequences in product spaces and its applications to the dual convergence of augmented Lagrangian methods
In a recent Math. Program. paper, Eckstein and Silva proposed a new error criterion for the approximate solutions of augmented Lagrangian subproblems. Based on a saddle-point formulation of the primal and dual problems, they autors proved that dual sequences generated by augmented Lagrangians under this error criterion are bounded and that theirs limit points are dual solutions. In this note, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comp. Opt. and Appl.
دوره 69 شماره
صفحات -
تاریخ انتشار 2018